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Abstract. We investigate the relaxation effects on the dynamics of two-component dilute gas Bose-Einstein
condensates (BEC) with relatively different two-body interactions and Josephson couplings between the
two components. Three types of relaxation effects, i.e., one- and three-body losses and a pure phase
relaxation caused by elastic two-body collision between condensed and noncondensed atoms, are examined
on the dynamical behavior of a macroscopic superposition, i.e., Schrödinger cat state, of two states with
atom-number differences between the two components, which is known to be created by the time evolution
in certain parameter regimes. Although three-body losses show a relatively large suppression of the revival
behavior of Schrödinger cat state and the Pegg-Barnett phase-difference distribution between the two
components for a small-size Schrödinger cat state, one- and three-body loss effects are not shown to
directly depend on the size of Schrödinger cat state. In contrast, the pure-phase relaxation effects, causing
a reduction of phase-difference distribution and then decaying the Schrödinger cat state, significantly
increase with the increase of the size of Schrödinger cat state. These features suggest that a detection of
damped collapse-revival behavior is highly possible for medium-size Schrödinger cat states in small-size
two-component BECs.

PACS. 03.75.Gg Entanglement and decoherence in Bose-Einstein condensates – 03.75.Mn Multicom-
ponent condensates; spinor condensates – 03.75.Kk Dynamic properties of condensates; collective and
hydrodynamic excitations, superfluid flow – 03.67.Mn Entanglement production, characterization, and
manipulation

1 Introduction

Recently, several proposals for the generation of
meso-/macro-scopic quantum superposition states, i.e.,
Schrödinger cat states, in Bose-Einstein condensates
(BECs) [1–3] have been reported [4–7]. The genera-
tion of Schrödinger cat states employs two-component
BECs [8–11] composed of two hyperfine sublevels of
87Rb, i.e., |F, mf 〉 = |1,−1〉 and |2, 2〉 [8] or |1,−1〉
and |2, 1〉 [9–11], in which the two components can be cou-
pled with each other via Josephson coupling achieved by
the Raman or radio-frequency transitions. The generation
scheme of Schrödinger cat state proposed by Gordon and
Savage [6,7] uses a two component BEC with two-body in-
teractions, i.e., atom-atom collisions, and weak Josephson
coupling between the two components, where the inter-
play between the two-body interactions and the Josephson
coupling leads to the Schrödinger cat states of the type by
Cirac et al. [4]. The two- and four-mode models as well as
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a simple phase relaxation model are applied and predict
the generation of Schrödinger cat states despite remaining
limitations of these models [6]. In our previous paper [12],
we have applied the Pegg-Barnett (PB) two-mode phase
operators [13–19] to the investigation of the long-time be-
havior of Schrödinger cat state concerning two-component
atom-number difference and relative phase dynamics of
two-component BECs with various relative magnitude be-
tween the Josephson coupling and the difference between
intra- and inter-component two-body interactions. In cer-
tain parameter regions, the created Schrödinger cat state
turns out to exhibit collapse-revival behaviors in the long-
time region, where the revival period, i.e. the lifetime of
Schrödinger cat state, and its size, i.e., the interval be-
tween split two peaks of atom-number difference distribu-
tion, depend on the relative magnitude of these parame-
ters.

Of course, such long-time collapse-revival behavior of
Schrödinger cat state would be significantly suppressed
by the dissipation and phase relaxation. In this study, we
therefore investigate the effects of the loss of condensed
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atoms due to one- and three-body collisions [20,21] and
the pure-phase relaxation due to the two-body collision
between condensed and noncondensed atoms [7,22–24]
on the dynamics of Schrödinger cat state concerning the
atom-number difference between two components as well
as the PB relative phase distribution. The characteristics
of each relaxation effect are explored and discussed on
their dependences on the size of Schrödinger cat state.
Concerning the numerical calculation scheme of relax-
ation dynamics, the second-order Monte Carlo wavefunc-
tion (MCWF) approach [25] is formulated for the present
model instead of conventional quantum master equation
approach since the MCWF approach will be useful for the
extended application to more complicated and large-size
multi-component BEC systems though it is not necessary
for the present application. The results obtained in the
present study are important from the viewpoint of not
only theoretical interests, e.g., how to relate the decoher-
ence effects to the emergence of the macroscopically dis-
tinguishable states in the classical world from the super-
position of different states in the quantum world [26–28],
but also a measurement of meso/macro-scopic superposi-
tion states and the application to quantum information
devices [29].

This paper is organized as follows. Section 2 con-
tains a review of a model Hamiltonian for two-component
BECs under the two-mode approximation as well as
the Pegg-Barnett two-mode quantum-phase distribution.
In Section 3, the quantum master equation involving
one- and three-body losses and pure-phase relaxation
is presented followed by its second-order Monte Carlo
wavefunction unraveling scheme. Section 4 elucidates the
dependence of long-time relaxation dynamics of atom-
number difference on several relaxation parameters for two
different sizes of Schrödinger cat states as well as the dy-
namics of phase-difference distribution between the two
components. This is followed by a conclusion in Section 5.

2 Model Hamiltonian of two-component
BECs and relative phase distribution

In this study, we consider a one-dimensional BEC sys-
tem composed of two components (A and B). In the two-
mode approximation, all modes except for the condensate
modes, i.e., one mode for each component, are neglected.
The Hamiltonian under this approximation becomes [6]

H2 = EAa+a + EBb+b +
λ

2
(
a+b + b+a

)

+
WAA

2
a+a+aa +

WBB

2
b+b+b b + WABa+b+b a,

(1)

where EA(B) is an energy of single particle Hamiltonian
of component A(B), WXY is the two-body potentials de-
scribing collisions between condensed atoms of compo-
nents X and Y , and λ is the strength of the Josephson
coupling between the two components in the condensate

mode. The system is described using the basis |nA, nB〉
(nA + nB = N at the initial time, N is the total atom
number), which is the product state of the number state
with nA atoms of component A and nB atoms of com-
ponent B. The energy standard is assumed to be set
by EA = EB = 0. We also assume that the two intra-
component two-body interaction coefficients are the same
WAA = WBB ≡ W , which does not lead to any loss of
generality in the two-mode approximation [6]. As an ini-
tial state, we consider the atomic coherent state [30,31]
with phase difference φ between the two components:

|Ψ〉 =
1

2N/2
√

N !

(
eiφa+ + b+

)N |vac〉

=
1

2N/2

N∑

p=0

√(
N
p

)
einAφ |N, p〉 . (2)

The φ = 0 state, which is created by applying π/2 pulse
to N atoms in component A followed by a π/2 relative
phase shift of the two components, is found to evolve into
a Schrödinger cat state [6].

We here employ the two-mode Pegg-Barnett (PB)
phase operator, which is used for evaluating the pho-
ton phase properties [12–19], in order to examine the rel-
ative phase (phase-difference, φB − φA) distribution be-
tween the two components of BECs. The two-component
BECs |Ψ〉 are described in general:

|Ψ〉 =
∑

nA,nB

CnA,nB |nA, nB〉, (3)

where CnA,nB is a coefficient and satisfies the condition:
nA +nB = N in the non-dissipative case. The correspond-
ing density operator (ρ2BEC ) is written by

ρ2BEC = |Ψ〉 〈Ψ |
=

∑

nA,nB

n′
A,n′

B

C∗
n′

A,n′
B
CnA,nB |nA, nB〉 〈n′

A, n′
B|. (4)

The two-mode PB phase distribution P (φA
mA

, φB
mB

), which
represents the joint probability density for two-component
phases φA

mA
and φB

mB
, are expressed as

P (φA
mA

, φB
mB

) =
∣
∣
∣
〈
φA

mA
, φB

mB

∣
∣
∣Ψ

〉∣
∣
∣
2

=
1

(s + 1)2
∑

nA,nB

n′
A,n′

B

ρ2BEC
nA,nB ,n′

A,n′
B

× exp i(n′
A − nA)φA

mA
exp i(n′

B − nB)φB
mB

. (5)

In equation (5), we use the following relation (6) between
phase and number states in the one component case. In
the PB approach, all calculations concerning the phase
properties are performed in an (s + 1)-dimensional space
spanned by s + 1 orthonormal phase states, in which s
value is equal to the atom number N (=nA + nB) in the
BEC. In the case of large s value, the s + 1 phase states
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become orthogonal with each other. The s+1 orthonormal
phase states of a one-component BEC are defined by

|φm〉 =
1

(s + 1)1/2

s∑

n=0

exp(inφm) |n〉, (6)

where φm = φ0 + 2πm/(s + 1) (m = 0, 1, 2, ..., s) and φ0

is an arbitrary real number. In this study, we adopt
φ0 = −sπ/(s + 1) to locate the initial phase of a one-
component BEC on the origin (φ = 0) of the phase axis
defined in the region: −π ≤ φm ≤ π. In the case of a
two-component BEC, these relations are satisfied for each
component. Using equation (5), the phase-difference dis-
tribution is given by

P (φB
mB

− φA
mA

) ≡ P (φ−
m)

=
1

s + 1

∑

nA,nB

∑

n′
A

ρ2BEC
nA,nB ,n′

A,nA+nB−n′
A

× exp i(nA − n′
A)φ−

m, (7)

which is turned out to be equal to P (φA
mA

, φB
mB

) (Eq. (5))
multiplied by (s + 1). This shows that the P (φA

mA
, φB

mB
)

takes the same value on the line φB
mB

− φA
mA

= const.,
which also leads to the fact that the phase-sum P (φA

mA
+

φB
mB

) becomes a flat distribution, indicating the same
probability for different phase-sum values. In general,
the φ−

m also has the 2π periodicity [14] and P (φ−
m) is plot-

ted in the region −π ≤ φ−
m ≤ π with φ−

m = (2m−s)π/(s+
1). Although the relative phase operators are proposed
and used for two-mode phase dynamics [32–36], we here
employ the relative phase distribution generated by the
absolute-phase approaches such as Pegg-Barnett since the
positive operator valued measure (POVM) [32,34] gener-
ated by eigenstates of the relative phase operator is just
the same induced by other absolute-phase approaches such
as Pegg-Barnett, when cast to the appropriate 2π range.

3 Monte Carlo wavefunction approach
to the dynamics of two-component BECs

3.1 Quantum master equation involving
one- and three-body losses and pure-phase relaxation

In general, there are two kinds of relaxations for BECs,
i.e., a population relaxation such as one- and three-body
losses, and a pure-phase relaxation caused by the two-
body collisions between condensed (trapped) and non-
condensed (untrapped) atoms. We elucidate the effects
of these relaxations on the long-time evolution of small-
and large-size Schrödinger cat states. It is well-known that
atomic losses of BECs are primarily caused by three-body
losses, which represent the process that three atoms col-
lide to form a biatomic molecule and an atom with large
kinetic energy, followed by the escape of both of them
from the trap. Another type of loss is one-body losses,
in which individual atoms are dissipated from the trap

due to the inelastic interaction with the thermal cloud of
noncondensed atoms. Although the one-body losses can
be reduced in principle in the case of a small number of
noncondensed atoms with sufficient energy to kick atoms
out of the trap, i.e., at sufficiently low temperatures, in-
trinsic three-body losses cannot be eliminated. The elas-
tic two-body interaction between the condensed atoms
and thermal cloud of noncondensed atoms causes a pure-
phase relaxation, which becomes relatively important at
low temperatures. Although the pure-phase relaxation ef-
fects on the creation of Schrödinger cat state have been
examined in the previous study [7], the effects of one-
and three-body losses as well as a pure relaxation on the
collapse-revival behavior of Schrödinger cat state have not
been investigated.

Using the previous results [7,22,37], deriving the ana-
lytical expression of decoherence time of BECs based on
the quantum relaxation theory [38], the relaxation pro-
cesses of the BECs are described effectively by the quan-
tum master equation:

ρ̇ = i[ρ, H2] + Lrelaxρ, (8)

where

Lrelaxρ = (L1body-loss + L3body-loss + Lphase-rel)ρ. (9)

The atomic unit (� = me = e = 1) is used throughout this
paper. Here, one- and three-body losses are expressed by

L1body-lossρ =
γ1A

2
(
2aρa+ − a+aρ − ρ a+a

)

+
γ1B

2
(
2bρb+ − b+bρ − ρ b+b

)
, (10)

and

L3body-lossρ =
γ3A

2

[
2 (a)3 ρ

(
a+

)3 − (
a+

)3 (a)3 ρ − ρ
(
a+

)3 (a)3
]

+
γ3B

2

[
2 (b)3 ρ

(
b+

)3 − (
b+

)3 (b)3 ρ − ρ
(
b+

)3 (b)3
]
,

(11)

where γnX indicates the dissipation rate of BEC atoms for
component X (X = A, B) by n-body losses. The pure-
phase relaxation term is represented by

Lphase-lossρ =
κA

2
[
2nAρnA − (nA)2ρ − ρ(nA)2

]

+
κB

2
[
2nBρnB − (nB)2ρ − ρ(nB)2

]
, (12)

where κX is a pure-phase relaxation rate for BEC compo-
nent X (X = A, B), and nX is the number operator for
component X . It is noted that the pure-phase relaxation
preserves the total number of condensed atoms composed
of components A and B.

In this study, although these relaxation parameters are
considered only from the viewpoint of the relative com-
parison of the effects of these relaxation processes on the
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collapse-revival behavior of Schrödinger cat states, the ex-
plicit analytical forms for some of them are obtained as
well as the details of derivation of the similar form of mas-
ter equations in previous studies [7,22,37]. The relaxation
parameter for three-body loss obtained by Jack [37] is ex-
pressed as

γ3 ≈ γ̃/3, (13)

where γ̃ is a factor related to trap parameters, recombina-
tion rate K3, etc. and gives a value of 3.3 × 10−12 s−1

for the BEC for 87Rb with N = 3 × 105 atoms with
K3 = 2.2 × 10−28 cm6/s and trap parameters [37]. The
three-body loss is caused by the three-body recombination
process, which produces a molecule and an atom with a
large kinetic energy and leads to the escape of them from
the trap. This is considered to be a fundamental loss pro-
cess because it cannot be reduced unlike the other loss
caused by the collisions with untrapped (noncondensed)
atoms. As mentioned in Section 4.2, the three-body loss
effects scale as N3, so that the it is more important for
large-size BECs. Also, another type of three-body losses
composed of two atoms of component A(B) and one atom
of component B(A), which is not considered in this study,
is estimated to give the same decoherence rate dependence
(Eq. (31)) except for the case of large cat size (m ∼ N),
where the decoherence rate is significantly attenuated. We
have estimated the dependence of the number of conden-
sate similarly to the other relaxation cases. On the other
hand, the one-body loss and pure-phase relaxations in this
study are caused by the inelastic and elastic two-body
collisions of condensed (trapped) atoms between noncon-
densed (untrapped) atoms, respectively [22]. Particularly,
the relaxation rate by elastic two-body collisions, i.e.,
pure-phase relaxation, depends on the square of the size of
Schrödinger cat (see Sect. 4.2) in contrast to the linear de-
pendence for the rate by one-body loss, so that the elastic
two-body collisions, leading to the pure-phase relaxation,
are predicted to play a more important role on the relax-
ation of Schrödinger cat states. From the previous studies
by Dalvit et al. [22] and Louis et al. [7], the pure-phase
relaxation parameter κ is represented by

κ ≈ 16π3(8πa2nNC vT ), (14)

where a is a s-wave scattering length, nNC is the number
density of noncondensed atoms, and vT (=

√
2kBT/m) is

their thermal velocity at temperature T . Using the values
for 87Rb (a = 5 nm and m = 1.4 × 10−25 kg) provides at
T = 1 µK [7],

κ ≈ 2 × 10−15 nNC . (15)

The density of noncondensed atoms depends on tempera-
ture and typically ranges from 1019 m3 just above the con-
densation temperature to zero at T = 0 [7]. It is noted that
Dalvit et al. proposed an experimental scenario of dra-
matically reducing this type of relaxation thanks to trap
engineering and symmetrization of the condensed atom
cloud [22]. In Section 4, we estimate the decoherence time
of Schrödinger cast state caused by three-body losses and
pure-phase relaxation and discuss the possibility of experi-
mental measurement of its collapse-revival behavior based

on our results using model simulations and the above re-
lation to experimental values.

3.2 Second-order Monte Carlo wavefunction approach

We briefly explain the calculation scheme of the second-
order MCWF approach. In the quantum master equation,
equation (8), the relaxation superoperator is represented
by the Lindblad form [39] in the Born-Markov approxi-
mation [38] (see Eqs. (10–12)):

Lrelaxρ = −1
2

∑

m

(C+
mCmρ + ρC+

mCm) +
∑

m

CmρC+
m.

(16)
This type of relaxation operator is widely applied in dis-
sipative dynamics in quantum optics, chemical physics,
biology and so on. The Lindblad operators C+

m and Cm

act on the system, and their forms depend on the nature
of problem.

The original MCWF method simulates the evolution
of quantum trajectories in Hilbert space conditioned on
continuous detection of quanta, e.g., photons, involving
two types of elements: smooth evolution by the non-
Hermitian Hamiltonian Heff , which originates in the first
terms on the right-hand side of equations (8) and (16),
and random interruptions of the non-Hermitian evolution
by projections (quantum jumps) described by the sec-
ond term on the right-hand side of equation (16). The
higher-order unravelings in the MCWF method are ad-
vantageous to obtaining more accurate and stable numer-
ical results [25]. In this study, the second-order unraveling
method is employed. From the integration of the quantum
master equation (8) to second order in δt, the following
form is obtained [25]:

ρ(t + δt) = Uρ(t)U+

+
1
2
δt

∑

m

UCmρ(t)C+
mU+ +

1
2
δt

∑

m

CmUρ(t)U+C+
m

+
1
2
δt2

∑

m,n

UCmCnρ(t)C+
n C+

mU+ + O(δt3). (17)

Here, U indicates the non-Hermitian evolution, which is
referred to as the “no-jump” evolution, under the influence
of the effective Hamiltonian (Eq. (19)):

U = exp (−iHeff δt) , (18)

where
Heff = H2 − i

2

∑

m

C+
mCm. (19)

The each term on the right-hand side of equation (17)
represents the “minitrajectory” [25]. The density ma-
trix evolution can be simulated with pure states by us-
ing an expansion of density matrix into minitrajectories.
The first minitrajectory (the first term) of equation (17)
(m1) describes a no-jump evolution, the second (m2) and
third (m3) minitrajectories represent a jump followed by a
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no-jump evolution and a no-jump evolution followed by a
jump, respectively. The fourth minitrajectories (m4) de-
scribe two successive jumps followed by a no-jump evo-
lution. It is noted that the second-order unraveling spec-
ifies two points: at the beginning and at the end of δt
and requires two successive quantum jumps. The proce-
dure of turning equation (17) into a Monte-Carlo sim-
ulation is obvious because each minitrajectory in equa-
tion (17) corresponds to the conditioned evolution of the
system, which occurs with a specific probability. This pro-
cedure is described as follows. The normalized wavefunc-
tion |Ψ(t + δt)〉 of the BEC as well as the probability δpl

to choose its evolution in time step δt for each minitrajec-
tory in equation (17) are represented by [40–42]

(m1) |Ψ(t + δt)〉 =
U |Ψ(t)〉√

δp1
,

δp1 = 〈Ψ(t)|U+U |Ψ(t)〉 , (no jump) (20)

(m2) |Ψ(t + δt)〉 =
UCm |Ψ(t)〉

√
δp2m/(δt/2)

,

δp2m = 〈Ψ(t)|C+
mU+UCm |Ψ(t)〉 δt

2
, (21)

(m3) |Ψ(t + δt)〉 =
CmU |Ψ(t)〉

√
δp3m/(δt/2)

,

δp3m = 〈Ψ(t)|U+C+
mCmU |Ψ(t)〉 δt

2
, (22)

and

(m4) |Ψ(t + δt)〉 =
UCmCn |Ψ(t)〉
√

δp4m/(δt2/2)
,

δp4mn = 〈Ψ(t)|C+
n C+

mU+UCmCn |Ψ(t)〉 δt2

2
. (23)

In the second-order MCWF approach, we firstly generate
a random number uniformly distributed between 0 and
1 in order to choose a minitrajectory (representing no-
jump and/or jump evolutions of the system) with a spe-
cific probability in the next time step δt (see Eqs. (20–23)).
The no-jump evolution is tested first because the probabil-
ities choosing other minitrajectories (involving quantum
jumps) are very small for small δt. If the no-jump mini-
trajectory is not chosen, one of the minitrajectories involv-
ing quantum jumps is chosen at the specific probability.
After the evolution δt of wavefunction for a chosen mini-
tarjectory, the resulting wavefunction is renormalized (see
Eqs. (20–23)). Such procedure is repeated at each time
step δt. Details of the numerical calculation procedure of
the wavefunction at time t + δt using the Monte Carlo
method are presented in references [40–42].

After obtaining a sufficiently large number of trajecto-
ries ρ(i)(t)

(
=

∣
∣Ψ (i)(t)

〉 〈
Ψ (i)(t)

∣
∣) constructed by the Monte

Carlo wavefunctions
∣∣Ψ (i)(t)

〉
, in which i indicates the tra-

jectory number (i = 1, ..., MC), we average these density

matrix elements, 〈nA, nB| ρ(i)(t) |n′
A, n′

B〉, at each time t
using the basis of the two component BEC {|nA, nB〉}
spanned by the direct product of the number state of each
component {|nX〉} (nX = 1, 2, ..., NX , X = A, B):

ρnA,nB ,n′
A,n′

B
(t) ≡ 〈nA, nB| ρ(t) |n′

A, n′
B〉

∼= 1
MC

MC∑

i=1

〈nA, nB| ρ(i)(t) |n′
A, n′

B〉. (24)

The matrix elements using atom-number difference basis
{|m〉} (m = nA − nB) are calculated by

ρm,m′(t) =
∑

nA,nB ,n′
A,n′

B

(nA−nB=m,
n′

A−n′
B=m′)

ρnA,nB ,n′
A,n′

B
(t). (25)

Note that the atom-number difference m (=nA −nB) sat-
isfies the condition: −N ≤ m ≤ N , and it varies in units of
two. Various properties, e.g., phase-difference distribution
(Eq. (7)), concerning BEC state can be calculated using
these reduced density matrices.

As mentioned in Section 3.1, we consider three types of
Lindblad-type relaxations, i.e., one-body losses (Eq. (10)),
three-body losses (Eq. (11)) and a pure-phase relaxation
(Eq. (12)), of the BECs. The explicit forms of Lindblad
operators Cm in equation (16) for these relaxation pro-
cesses are described as follows.

C1 =
√

γ1Aa, C2 =
√

γ1Bb (one-body losses), (26)

C3 =
√

γ3Aa3, C4 =
√

γ3Bb3 (three-body losses), (27)

and

C5 =
√

κAnA, C6 =
√

κBnB (pure-phase relaxation).
(28)

Using equations (18–23) with these Lindblad opera-
tors, we can perform the dissipative dynamics of two-
component BECs by the second-order MCWF approach.

4 Relaxation dynamics of atom-number
and phase differences for two-component
BECs

4.1 Parameter dependence of dynamical behavior
of Schrödinger cat state in the non-relaxation case

For convenience of the following discussion, we summa-
rize the results obtained in previous studies [6,7,12] on
the creation and time evolution of Schrödinger cat state
concerning atom-number difference distribution for two-
component BECs. Gordon and Savage [6] have found that
a two-mode model of a two-component BEC with two-
body interactions (W − WAB �= 0) and weak Josephson
coupling between the two components evolve into a
Schrödinger cat state which differs in the atom-number
difference between the two components. The mechanism
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generating the Schrödinger cat states is explained in the
previous papers [6,7]. They have also found that the size of
the Schrödinger cat state depends on the Josephson cou-
pling parameter λ: the maximal size is realized for λ = λc,
which is given by references [6,30]

λc =
N

4
(W − WAB). (29)

Louis et al. [7] have reported that the Schrödinger cat state
by Gordon-Savage scheme is created after a short-time
evolution (≈2 s) of the initial state for a set of parameters:
N = 30, λ = 0.3 s−1, W = 1.2 s−1 and WAB = 0.935 s−1,
which corresponds to the region, λ < λc (=1.9875 s−1).

In our previous study [12], we have investigated the
long-time dynamics of the atom-number difference be-
tween the two components of the two-component BEC
for different relative magnitude between the Josephson
coupling and the difference between intra- and inter-
component two-body interactions. The feature of dynam-
ics is shown to be classified by relative magnitude be-
tween λ and λc. Except for the two limit conditions,
λc 	 λ and λc 
 λ, the state has been found to evolve
into a mesoscopic superposition state, i.e., Schrödinger cat
state, composed of two states with different atom-number
differences (m and −m) between the two components. Fur-
ther, the created Schrödinger cat state has turned out to
exhibit collapse-revival behaviors in the long-time region,
in which the revival period, i.e. the lifetime of Schrödinger
cat state, and its size, i.e., the interval between split two
peaks of ρm,m(t), are shown to depend on the relative mag-
nitude between λ and λc. Figure 1 shows the dynamics of
atom-number difference distribution ρm,m(m), where m is
the atom-number difference nA − nB (−30 ≤ m ≤ 30 for
N = 30), up to t = 10 s as well as the phase-difference
distribution P (φ−) (Eq. (7)) between the two components
in the region −π ≤ φ− ≤ π for the Josephson coupling pa-
rameter, λ = 0.3 s−1 (<λc) (Figs. 1(a-1) and 1(a-2)) and
λ = 1.9 s−1 (≈λc) (Figs. 1(b-1) and 1(b-2)). The time
evolution of the initial state with φ = 0 (Eq. (2)) using
Hamiltonian H2 (Eq. (1)) is carried out by the sixth-order
Runge-Kutta method with a time step ∆t = 1.25×10−4 s.
For λ = 0.3 s−1, a single peak at the initial time partitions
into two peaks around m = ±10 at t = 2 s as shown in the
study by Louis et al. [7]. From the magnitude of the off-
diagonal density matrix |ρm,−m(t)| (m = ±10) at t = 2 s
(see Fig. 1c in Ref. [12]), the condensate state is turned out
to be a superposition of a state (20 atoms in component A
and 10 atoms in component B) and a state (10 atoms in
component A and 20 atoms in component B). As seen
from Figure 1(a-2), the initial state exhibits a single sharp
peak at φ− = 0 (see Eq. (2)). When the time evolution
starts, the single peak of P (φ−) begins to diffuse and
broaden symmetrically with respect to φ− = 0 [6]. In the
subsequent time evolution (10 s ≥ t ≥ 2 s) for λ = 0.3 s−1,
the breadth of P (φ−) is gradually reduced and peaks grow
up around φ− = 0 after 2.5 s. This leads to the fea-
ture that in the region 2 s ≤ t ≤ 4 s, two sharp peaks
of ρm,m(t) at t = 2 s are reduced, while several small peaks
with smaller split intervals and broad distributions around

Fig. 1. Non-relaxation time evolutions of atom-number differ-
ence distribution ρm,m(t) (m = nA − nB , −30 ≤ m ≤ 30 for
N = nA+nB = 30) between components A and B from the ini-
tial state equation (2) for two types of parameters, λ = 0.3 s−1,
W = 1.2 s−1 and WAB = 0.935 s−1 [(a-1)] and λ = 1.9 s−1,
W = 1.2 s−1 and WAB = 0.935 s−1 [(b-1)], as well as their
PB phase-difference distributions P (φ−) (φ− = φB − φA) be-
tween the two components in the region −π ≤ φ− ≤ π [(a-2)
and (b-2)]. As the value increases, the color runs through red,
yellow, green, cyan, blue, magenta, and back to red again.
The number of contours is 40 for interval (0.0, 0.4) for ρm,m(t)
and P (φ−). A colour version is available in electronic form at
http://www.eurphysj.org.

φ− = 0 grow up alternatively. Also, nearly symmetrical
time-evolution behavior is observed in ρm,m(t) and P (φ−)
with respect to t = 4.5 s in the region 0 s ≤ t ≤ 9 s though
the split and collision behaviors of these distributions are
rather complicated. Although further long-time behavior
is not shown in this study, nearly symmetrical repeating
behavior of P (φ−) and ρm,m(t) are observed between the
regions, 0 s ≤ t ≤ 9 s and 9 s ≤ t ≤ 18 s, indicating
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a repeating period of about 9 s [12]. Such feature indi-
cates the collapse-revival of Schrödinger cat state created
at t = 2 s.

On the other hand, in the case of λ = 1.9 s−1, which
is nearly equal to λc and is expected to give the largest
size of Schrödinger cat state (Figs. 1(b-1) and 1(b-2)):
the atom number difference |m| nearly amounts to the
largest number 30 (the total atom number). As seen in
our previous study [12], the collapse-revival period of the
Schrödinger cat state is smaller (∼4 s) than that (∼9 s)
for λ = 0.3 s−1 though the relation in the dynamical be-
havior between ρm,m(t) and P (φ−) is the same as that for
λ = 0.3 s−1. These results suggest that the repeating peri-
ods of revival structures are reduced when the Josephson
coupling λ increases.

4.2 Effects of one- and three-body losses
and a pure-phase relaxation on the dynamical
behavior of Schrödinger cat state in the case
of λ = 0.3 s−1 and λ = 1.9 s−1

In this section, we examine the effect of dissipation, one-
and three-body losses, and a pure-phase relaxation on the
time evolution of Schrödinger cat state for two Josephson
coupling cases: λ = 0.3 s−1 and λ = 1.9 s−1. We as-
sume that the three types of relaxation factors between
two components are equal to each other, respectively, i.e.,
γ1A = γ1B ≡ γ, γ3A = γ3B ≡ γ3 and κA = κB ≡ κ.
We focus on the relative differences in the effects of these
three types of relaxations by employing the relaxation fac-
tors nearly satisfying the realistic relative order of magni-
tudes [7,20–24]: γ1 = 1.0× 10−2 s−1, γ3 = 3.0× 10−5 s−1

and κ = 2.0 × 10−2 s−1.
Figure 2 shows the time evolutions of ρm,m(t)

and P (φ−) for one-body losses, three-body losses and a
pure-phase relaxation for the small-size Schrödinger cat
state (λ = 0.3 s−1). From Figures 2(a-1), 2(a-2), 2(b-1)
and 2(b-2), one- and three-body losses give mutually
similar tendencies of dissipation in ρm,m(t) and dephas-
ing in P (φ−) though the relaxation factor of one-body
losses is about 300 times as large as that of three-body
losses. Namely, although the creation of Schrödinger cat
state, i.e., two separate peaks of atom-number difference
[ρm,m(t)] around m = ±10, occurs around t = 2 s as well
as the corresponding relative phase [P (φ−)] diffusion as
shown in non-relaxation case (Fig. 1), the subsequent be-
haviors of ρm,m(t) and P (φ−) are significantly damped
and the revival behavior is hardly observed around t =
9 s. The relaxation of phase-difference distribution is pre-
dicted to be caused by the phase relaxation originating
in the one- and three-body losses. By contrast, the pure-
phase relaxation (Figs. 2(c-1) and 2(c-2)), whose factor is
two times as large as that of one-body losses, is turned
out to less damp the atom-number difference distribu-
tion [ρm,m(t)] than that for one-body losses, while the
phase-difference distribution [P (φ−)] is more significantly
damped than those for one- and three-body losses. This
shows that the creation of Schrödinger cat state and the
subsequent time evolution are not significantly suffered

Fig. 2. Long-time evolution (0 ≤ t ≤ 10 s) of atom-number
difference distribution ρm,m(t) and phase-difference distribu-
tion P (φ−) for small-size Schrödinger cat state (λ = 0.3 s−1,
W = 1.2 s−1 and WAB = 0.935 s−1) for one-body losses
(γ1 = 1.0 × 10−2 s−1) [(a-1) and (a-2)], three-body losses
(γ3 = 3.0 × 10−5 s−1) [(b-1) and (b-2)] and pure-phase re-
laxation (κ = 2.0 × 10−2 s−1) [(c-1) and (c-2)]. See Figure 1
for further legends. A colour version is available in electronic
form at http://www.eurphysj.org.
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from the damped behavior of phase-difference distribu-
tion [P (φ−)] in the case of small-size Schrödinger cat
states. This can be understood by the fact that the phase
diffusion, which is essential for creating Schrödinger cat
state, sufficiently occurs in the present pure-phase relax-
ation rate and there is no direct dissipation of the number
of atoms population in the case of pure-relaxation case.

For the large-size Schrödinger cat state (λ = 1.9 s−1 ≈
λc), Figure 3 shows the time evolutions of ρm,m(t)
and P (φ−) for one-body losses (Figs. 3(a-1) and 3(a-2)),
three-body losses (Figs. 3(b-1) and 3(b-2)) and a pure-
phase relaxation (Figs. 3(c-1) and 3(c-2)) with the same
factors as those of λ = 0.3 s−1 case. For atom-number dif-
ference distribution ρm,m(t), the three-body losses cause
slightly larger reduction of ρm,m(t) and the size of
Schrödinger cat state as the time proceeds compared to
the case of one-body losses. Such difference in relaxation
behaviors is more evident in the phase-difference [P (φ−)]
evolution (Fig. 3(a-2) vs. 3(b-2)): the P (φ−) for three-
body losses are more rapidly damped than that for one-
body losses. This is in contrast to the case of the small-
size Schrödinger cat state (λ = 0.3 s−1), where one- and
three-body losses give similar damping behaviors of P (φ−)
to each other (see Figs. 2(a-2) and 2(b-2)). The differ-
ence from the case of λ = 0.3 s−1 more distinctively ap-
pears in the case of pure-phase relaxation. Namely, in the
case of the large-size Schrödinger cat state, the degree
of damping of ρm,m(t) and P (φ−) for pure-phase relax-
ation (Figs. 3(c-1) and 3(c-2)) is much larger than that
for one- (Figs. 3(a-1) and 3(a-2)) and three- (Figs. 3(b-1)
and 3(b-2)) body losses though in the case of small-
size Schrödinger cat state the pure-phase relaxation gives
somewhat less damped behavior of ρm,m(t) (Fig. 2(c-1))
than the case of one- and three-body losses (Figs. 2(a-1)
and 2(b-1)).

In order to understand the above difference in the
effects of population (one- and three-body losses) and
pure-phase relaxations between small- and large-size
Schrödinger cat states, we consider the damping behav-
iors of a single-mode harmonic oscillator for these types
of relaxations. From the master equation (Eq. (8)) with
relaxation operators, equations (10–12), the off-diagonal
density matrices at time t [ρm,−m(t)] are approximately
proportional to the initial ρm,−m(0) except for their oscil-
latory behaviors:

ρm,−m(t) ∝ exp[−γNt]ρm,−m(0),
for one-body losses (30)

ρm,−m(t) ∝ exp[−γN3t/4]ρm,−m(0),
for three-body losses (m 	 N) (31)

ρm,−m(t) ∝ exp[−γN(N − 1)(N − 2)t]ρm,−m(0),
for three-body losses (m ≈ N) (32)

and

ρm,−m(t) ∝ exp[−κm2t]ρm,−m(0),
for pure-phase relaxation (33)

Fig. 3. Long-time evolution (0 ≤ t ≤ 10 s) of atom-number
difference distribution ρm,m(t) and phase-difference distribu-
tion P (φ−) for large-size Schrödinger cat state (λ = 1.9 s−1,
W = 1.2 s−1 and WAB = 0.935 s−1) for one-body losses
(γ1 = 1.0 × 10−2 s−1) [(a-1) and (a-2)], three-body losses
(γ3 = 3.0 × 10−5 s−1) [(b-1) and (b-2)] and pure-phase re-
laxation (κ = 2.0 × 10−2 s−1) [(c-1) and (c-2)]. See Figure 1
for further legends. A colour version is available in electronic
form at http://www.eurphysj.org.
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where N and m depict the total number of atoms and the
atom-number difference at the initial time, respectively. It
is found from these approximate relations that the pop-
ulation relaxations (one- and three-body losses) give the
relaxation rate depending on the total atom number (∝N
for one-body losses and ∝N3 for three-body losses), while
the pure-phase relaxation gives the relaxation rate de-
pending on the square of atom-number difference (m), i.e.,
the size of Schrödinger cat state [7]. Because the initial
total number of atoms are constant (N = 30), this depen-
dence supports the difference of relaxation effects between
small (m ≈ 10)- and large (m ≈ 30)-size Schrödinger cat
states (shown in Figs. 2 and 3): the pure-phase relaxation
exhibits less damping effects for the small-size Schrödinger
cat state (λ = 0.3 s−1) than the population relaxations,
while for the large-size Schrödinger cat state (λ = 1.9 s−1)
this tendency is reversed. The remarkable damping effects
of three-body losses are understood by the fact that its re-
laxation rate is approximately proportional to N3 in con-
trast to the relaxation rate for one-body losses, which is
proportional to N . Also, the relaxation rate for three-body
losses indirectly depends on the size of Schrödinger cat
state (see Eqs. (31)) (m 	 N) and (32) (m ≈ N)), which
approximately indicates that the relaxation rate becomes
larger in the largest-size Schrödinger cat states than in
small-size Schrödinger cat states. This corresponds to the
feature that for λ = 1.9 s−1 (m ≈ N) the three-body losses
exhibit larger damped behaviors than one-body losses (see
Figs. 3(a-2) and 3(b-2)), while for λ = 0.3 s−1 one- and
three-body losses exhibit similar damping effects to each
other (see Figs. 2(a-2) and 2(b-2)).

In order to investigate the possibility of experimentally
observing collapse and revival dynamics for a BEC, we es-
timate the Schrödinger cat state lifetime, i.e., decoherence
time, for the three-body losses and pure-phase relaxation
caused by elastic two-body collision between condensed
(trapped) and noncondensed (untrapped) atoms using the
approximate analytical formulae of relaxation parameters
(Eqs. (13–15) in Sect. 3.1) obtained by previous studies [7,
22,37] and our simulation results as well as the condensed
atom number dependence of decoherence rate (Eqs. (30–
33)). The decoherence time (τ3dec) for three-body losses
is estimated to be 4 × 10−5 s for 87Rb (N = 3 × 105)
using equation (13) by Jack [37]. As predicted from the
dependence of τ3dec (τ3dec ∝ N−3) (Eq. (31)), the BEC
with N ∼ 103 is estimated to have the decoherence time
with ∼10 s. On the other hand, the pure-phase deco-
herence caused by two-body collision between condensed
(trapped) and noncondensed (untrapped) atoms is pre-
dicted to be important for large cat-size (the decoherence
time dependence is τdec ∝ m−2; m: cat size, Eq. (33)).
From the present study with N = 30 and m = 10,
the collapse-revival is predicted to occur within 10 s for
λ = 0.3 s−1. Dalvit et al. [22] have presented an ap-
proximate analytical expression of this type of pure-phase
decoherence rate (Eq. (14)) and have shown that the deco-
herence rate also depends on nNC (the density of noncon-
densed atoms), which depends strongly on temperature
and typically ranges from 1019 m−3 just above the con-
densation temperature to approximately 0 at T = 0 [7].

For 87Rb case at T = 1 µK considered in reference [3], de-
coherence time is approximately ∼1015/(m2nNC ). There-
fore, if the nNC is sufficiently small (∼109−1010 m−3), the
decoherence time for N = 3000 and m = 100 is 10–100 s,
which is expected to be larger than the collapse-revival
period of N = 30 and m = 10 (see Fig. 1). Also, an exten-
sion of collapse-revival period up to that (∼10 s) in the
case of N = 30 and m = 10 will be feasible by tuning the
Josephson coupling parameter λ. This suggests the pos-
sibility of observing the collapse-revival behavior of BEC
though for larger size BEC system (N ∼ 105−106) it will
be hard to detect the collapse-revival behavior due to very
small decoherence time caused by the three-body losses.

5 Conclusions

We have investigated the effects of three types of relax-
ations, i.e., one-body losses, three-body losses and a pure-
phase relaxation, caused by the interaction with thermal
clouds surrounding the BEC atoms and/or the collisions
between condensed atoms, on the time evolution of atom-
number difference Schrödinger cat state. Such Schrödinger
cat state, which is created in the two-component BEC
for different relative magnitude between the Josephson
coupling and the difference between intra- and inter-
component two-body interactions, is known to exhibit
collapse-revival behavior in the long-time region in the
case of non-relaxation. It is turned out that the three-
body losses provide much larger damping effects of atom-
number difference and phase-difference distributions than
one-body losses though these losses are not significantly
dependent on the size of Schrödinger cat state. In con-
trast, the pure-phase relaxation shows relatively smaller
damping effects than one- and three-body losses in the
case of small-size Schrödinger cat state, while pure-phase
relaxation effects significantly enhance with the increase
of the size of Schrödinger cat state. Using a single-mode
harmonic oscillator model, we obtain the approximate de-
pendence of each relaxation term on the total number of
atoms and/or the size of Schrödinger cat state. Namely,
the relaxation rate for one- and three-body losses are
turned out to be approximately proportional to the to-
tal number of atoms (N) and N3, respectively, while the
pure-phase relaxation rate is proportional to the square
of the size of Schrödinger cat state. From the present
results, the one- and three-body losses are primary rea-
sons of damping the creation and collapse-revival behav-
ior of Schrödinger cat state for relatively small-size BECs,
while the pure-phase relaxation dominates more signifi-
cantly in such damping behavior as the size of Schrödinger
cat state increases. Judging from the results that one-
and three-body losses give relatively large effects for the
small-size Schrödinger cat state, while the pure-phase re-
laxation more dominates in the large-size Schrödinger
cat state, the generation of medium-size Schrödinger cat
state by adjusting the Josephson coupling parameter will
be highly possible for the experimental realization of
Schrödinger cat state in relatively small two-component
BECs (N ∼ 103). Furthermore, from the result that



532 The European Physical Journal D

the collapse-revival period becomes smaller in larger-size
Schrödinger cat state, the medium-size Schrödinger cat
state will be also better for the detection of collapse-revival
behavior of Schrödinger cat state during a relatively small
period of time. Of course, we additionally have to require
a reduction of the number density of non-condensed atoms
to suppress the pure-phase relaxation and a sophisticated
reservoir engineering to attenuate one-body losses.

This work was supported by Grant-in-Aid for Scientific Re-
search (No. 14340184) from Japan Society for the Promotion
of Science (JSPS).
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